Internal
problem
ID
[14032]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
6.
Introduction
to
Systems
of
ODEs.
Problems
page
408
Problem
number
:
Problem
3(f)
Date
solved
:
Monday, March 31, 2025 at 08:22:30 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t)+x(t)-z(t) = 0, diff(y(t),t)-y(t)+x(t) = 0, diff(z(t),t)+x(t)+2*y(t)-3*z(t) = 0]; dsolve(ode);
ode={D[x[t],t]+x[t]-z[t]==0,D[y[t],t]-y[t]+x[t]==0,D[z[t],t]+x[t]+2*y[t]-3*z[t]==0}; ic={}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(x(t) - z(t) + Derivative(x(t), t),0),Eq(x(t) - y(t) + Derivative(y(t), t),0),Eq(x(t) + 2*y(t) - 3*z(t) + Derivative(z(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)