Internal
problem
ID
[14022]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
6.
Introduction
to
Systems
of
ODEs.
Problems
page
408
Problem
number
:
Problem
2(b)
Date
solved
:
Monday, March 31, 2025 at 08:22:16 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(t),t),t)-2*diff(y(t),t)+5*y(t) = exp(t); dsolve(ode,y(t), singsol=all);
ode=D[y[t],{t,2}]-2*D[y[t],t]+5*y[t]==Exp[t]; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(5*y(t) - exp(t) - 2*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {} dsolve(ode,func=y(t),ics=ics)