Internal
problem
ID
[14007]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
5.6
Laplace
transform.
Nonhomogeneous
equations.
Problems
page
368
Problem
number
:
Problem
5(e)
Date
solved
:
Monday, March 31, 2025 at 08:21:41 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=4*diff(diff(y(t),t),t)+4*diff(y(t),t)+y(t) = exp(-1/2*t)*Dirac(t-1); ic:=y(0) = 0, D(y)(0) = 0; dsolve([ode,ic],y(t),method='laplace');
ode=4*D[y[t],{t,2}]+4*D[y[t],t]+y[t]==Exp[-t/2]*DiracDelta[t-1]; ic={y[0]==0,Derivative[1][y][0] ==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-Dirac(t - 1)*exp(-t/2) + y(t) + 4*Derivative(y(t), t) + 4*Derivative(y(t), (t, 2)),0) ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 0} dsolve(ode,func=y(t),ics=ics)