Internal
problem
ID
[14001]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
5.6
Laplace
transform.
Nonhomogeneous
equations.
Problems
page
368
Problem
number
:
Problem
4(d)
Date
solved
:
Monday, March 31, 2025 at 08:21:27 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+y(t) = piecewise(0 <= t and t < Pi,t,Pi <= t,-t); ic:=y(0) = 0, D(y)(0) = 0; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]+y[t]==Piecewise[{{t,0<=t<Pi},{-t,t>=Pi}}]; ic={y[0]==0,Derivative[1][y][0] ==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-Piecewise((t, (t >= 0) & (t < pi)), (-1, t >= pi)) + y(t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 0} dsolve(ode,func=y(t),ics=ics)