Internal
problem
ID
[13999]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
5.6
Laplace
transform.
Nonhomogeneous
equations.
Problems
page
368
Problem
number
:
Problem
4(b)
Date
solved
:
Monday, March 31, 2025 at 08:21:22 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)-3*diff(y(t),t)+2*y(t) = piecewise(0 <= t and t < 1,0,1 <= t and t < 2,1,2 <= t,-1); ic:=y(0) = 3, D(y)(0) = -1; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]-3*D[y[t],t]+2*y[t]==Piecewise[{{0,0<=t<1},{1,1<=t<2},{-1,t>=2}}]; ic={y[0]==3,Derivative[1][y][0] ==-1}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-Piecewise((0, (t >= 0) & (t < 1)), (1, (t >= 1) & (t < 2)), (-1, t >= 2)) + 2*y(t) - 3*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 3, Subs(Derivative(y(t), t), t, 0): -1} dsolve(ode,func=y(t),ics=ics)