Internal
problem
ID
[13994]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
5.6
Laplace
transform.
Nonhomogeneous
equations.
Problems
page
368
Problem
number
:
Problem
3(g)
Date
solved
:
Monday, March 31, 2025 at 08:21:07 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+4*diff(y(t),t)+13*y(t) = 39*Heaviside(t)-507*(t-2)*Heaviside(t-2); ic:=y(0) = 3, D(y)(0) = 1; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]+4*D[y[t],t]+13*y[t]==39*UnitStep[t]-507*(t-2)*UnitStep[t-2]; ic={y[0]==3,Derivative[1][y][0] ==1}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq((507*t - 1014)*Heaviside(t - 2) + 13*y(t) - 39*Heaviside(t) + 4*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 3, Subs(Derivative(y(t), t), t, 0): 1} dsolve(ode,func=y(t),ics=ics)