Internal
problem
ID
[13986]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
5.6
Laplace
transform.
Nonhomogeneous
equations.
Problems
page
368
Problem
number
:
Problem
2(m)
Date
solved
:
Monday, March 31, 2025 at 08:20:53 AM
CAS
classification
:
[[_linear, `class A`]]
Using Laplace method With initial conditions
ode:=diff(y(t),t)-y(t) = exp(2*t); ic:=y(0) = 1; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],t]-y[t]==Exp[2*t]; ic={y[0]==1}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-y(t) - exp(2*t) + Derivative(y(t), t),0) ics = {y(0): 1} dsolve(ode,func=y(t),ics=ics)