Internal
problem
ID
[13983]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
5.6
Laplace
transform.
Nonhomogeneous
equations.
Problems
page
368
Problem
number
:
Problem
2(i)[j]
Date
solved
:
Monday, March 31, 2025 at 08:20:49 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+8*diff(y(t),t)+20*y(t) = sin(2*t); ic:=y(0) = 1, D(y)(0) = -4; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]+8*D[y[t],t]+20*y[t]==Sin[2*t]; ic={y[0]==1,Derivative[1][y][0] ==-4}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(20*y(t) - sin(2*t) + 8*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 1, Subs(Derivative(y(t), t), t, 0): -4} dsolve(ode,func=y(t),ics=ics)