Internal
problem
ID
[469]
Book
:
Elementary
Differential
Equations.
By
C.
Henry
Edwards,
David
E.
Penney
and
David
Calvis.
6th
edition.
2008
Section
:
Chapter
3.
Power
series
methods.
Section
3.3
(Regular
singular
points).
Problems
at
page
231
Problem
number
:
13
Date
solved
:
Saturday, March 29, 2025 at 04:54:23 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=(x^2-4)*diff(diff(y(x),x),x)+(x-2)*diff(y(x),x)+(x+2)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=(x^2-4)*D[y[x],{x,2}]+(x-2)*D[y[x],x]+(x+2)*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x - 2)*Derivative(y(x), x) + (x + 2)*y(x) + (x**2 - 4)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)