Internal
problem
ID
[13981]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
5.6
Laplace
transform.
Nonhomogeneous
equations.
Problems
page
368
Problem
number
:
Problem
2(h)
Date
solved
:
Monday, March 31, 2025 at 08:20:46 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)-2*diff(y(t),t)+5*y(t) = t+2; ic:=y(0) = 4, D(y)(0) = 1; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]-2*D[y[t],t]+5*y[t]==2+t; ic={y[0]==4,Derivative[1][y][0] ==1}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-t + 5*y(t) - 2*Derivative(y(t), t) + Derivative(y(t), (t, 2)) - 2,0) ics = {y(0): 4, Subs(Derivative(y(t), t), t, 0): 1} dsolve(ode,func=y(t),ics=ics)