Internal
problem
ID
[13976]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
5.6
Laplace
transform.
Nonhomogeneous
equations.
Problems
page
368
Problem
number
:
Problem
2(c)
Date
solved
:
Monday, March 31, 2025 at 08:20:39 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using Laplace method With initial conditions
ode:=4*diff(diff(y(t),t),t)+5*diff(y(t),t)+4*y(t) = 3*exp(-t); ic:=y(0) = -1, D(y)(0) = 1; dsolve([ode,ic],y(t),method='laplace');
ode=4*D[y[t],{t,2}]+5*D[y[t],t]+4*y[t]==3*Exp[-t]; ic={y[0]==-1,Derivative[1][y][0] ==1}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(4*y(t) + 5*Derivative(y(t), t) + 4*Derivative(y(t), (t, 2)) - 3*exp(-t),0) ics = {y(0): -1, Subs(Derivative(y(t), t), t, 0): 1} dsolve(ode,func=y(t),ics=ics)