67.3.25 problem Problem 26

Internal problem ID [13972]
Book : APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Dobrushkin. CRC Press 2015
Section : Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357
Problem number : Problem 26
Date solved : Monday, March 31, 2025 at 08:20:34 AM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }-6 y^{\prime \prime }+10 y^{\prime }&=0 \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (0\right )&=1\\ y^{\prime }\left (0\right )&=3\\ y^{\prime \prime }\left (0\right )&=8 \end{align*}

Maple. Time used: 0.089 (sec). Leaf size: 11
ode:=diff(diff(diff(y(t),t),t),t)-6*diff(diff(y(t),t),t)+10*diff(y(t),t) = 0; 
ic:=y(0) = 1, D(y)(0) = 3, (D@@2)(y)(0) = 8; 
dsolve([ode,ic],y(t),method='laplace');
 
\[ y = {\mathrm e}^{3 t} \cos \left (t \right ) \]
Mathematica. Time used: 60.047 (sec). Leaf size: 59
ode=D[ y[t],{t,3}]-6*D[y[t],{t,2}]+10*D[y[t],t]==0; 
ic={y[0]==1,Derivative[1][y][0] ==3,Derivative[2][y][0] ==8}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to \int _1^te^{3 K[1]} (3 \cos (K[1])-\sin (K[1]))dK[1]-\int _1^0e^{3 K[1]} (3 \cos (K[1])-\sin (K[1]))dK[1]+1 \]
Sympy. Time used: 0.204 (sec). Leaf size: 10
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(10*Derivative(y(t), t) - 6*Derivative(y(t), (t, 2)) + Derivative(y(t), (t, 3)),0) 
ics = {y(0): 1, Subs(Derivative(y(t), t), t, 0): 3, Subs(Derivative(y(t), (t, 2)), t, 0): 8} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = e^{3 t} \cos {\left (t \right )} \]