Internal
problem
ID
[13945]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
4,
Second
and
Higher
Order
Linear
Differential
Equations.
Problems
page
221
Problem
number
:
Problem
20(f)
Date
solved
:
Monday, March 31, 2025 at 08:19:49 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(2*sin(x)-cos(x))*diff(diff(y(x),x),x)+(7*sin(x)+4*cos(x))*diff(y(x),x)+10*cos(x)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(2*Sin[x]-Cos[x])*D[y[x],{x,2}]+(7*Sin[x]+4*Cos[x])*D[y[x],x]+10*y[x]*Cos[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((2*sin(x) - cos(x))*Derivative(y(x), (x, 2)) + (7*sin(x) + 4*cos(x))*Derivative(y(x), x) + 10*y(x)*cos(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False