Internal
problem
ID
[13943]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
4,
Second
and
Higher
Order
Linear
Differential
Equations.
Problems
page
221
Problem
number
:
Problem
20(d)
Date
solved
:
Monday, March 31, 2025 at 08:19:46 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(x^2-x)*diff(diff(y(x),x),x)+(2*x^2+4*x-3)*diff(y(x),x)+8*x*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x^2-x)*D[y[x],{x,2}]+(2*x^2+4*x-3)*D[y[x],x]+8*x*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(8*x*y(x) + (x**2 - x)*Derivative(y(x), (x, 2)) + (2*x**2 + 4*x - 3)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False