67.2.53 problem Problem 19(f)

Internal problem ID [13939]
Book : APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Dobrushkin. CRC Press 2015
Section : Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221
Problem number : Problem 19(f)
Date solved : Monday, March 31, 2025 at 08:19:39 AM
CAS classification : [[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

\begin{align*} \left (\cos \left (y\right )-y \sin \left (y\right )\right ) y^{\prime \prime }-{y^{\prime }}^{2} \left (2 \sin \left (y\right )+y \cos \left (y\right )\right )&=\sin \left (x \right ) \end{align*}

Maple. Time used: 0.030 (sec). Leaf size: 20
ode:=(cos(y(x))-y(x)*sin(y(x)))*diff(diff(y(x),x),x)-diff(y(x),x)^2*(2*sin(y(x))+y(x)*cos(y(x))) = sin(x); 
dsolve(ode,y(x), singsol=all);
 
\[ -y \cos \left (y\right )-c_1 x -\sin \left (x \right )+c_2 = 0 \]
Mathematica. Time used: 0.27 (sec). Leaf size: 28
ode=(Cos[y[x]]-y[x]*Sin[y[x]])*D[y[x],{x,2}]- D[y[x],x]^2* (2*Sin[y[x]]+y[x]*Cos[y[x]])==Sin[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\frac {y(x) \cos (y(x))}{x}+\frac {\sin (x)}{x}+\frac {c_1}{x}=c_2,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((-y(x)*sin(y(x)) + cos(y(x)))*Derivative(y(x), (x, 2)) - (y(x)*cos(y(x)) + 2*sin(y(x)))*Derivative(y(x), x)**2 - sin(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out