Internal
problem
ID
[13939]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
4,
Second
and
Higher
Order
Linear
Differential
Equations.
Problems
page
221
Problem
number
:
Problem
19(f)
Date
solved
:
Monday, March 31, 2025 at 08:19:39 AM
CAS
classification
:
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]
ode:=(cos(y(x))-y(x)*sin(y(x)))*diff(diff(y(x),x),x)-diff(y(x),x)^2*(2*sin(y(x))+y(x)*cos(y(x))) = sin(x); dsolve(ode,y(x), singsol=all);
ode=(Cos[y[x]]-y[x]*Sin[y[x]])*D[y[x],{x,2}]- D[y[x],x]^2* (2*Sin[y[x]]+y[x]*Cos[y[x]])==Sin[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-y(x)*sin(y(x)) + cos(y(x)))*Derivative(y(x), (x, 2)) - (y(x)*cos(y(x)) + 2*sin(y(x)))*Derivative(y(x), x)**2 - sin(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out