Internal
problem
ID
[13936]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
4,
Second
and
Higher
Order
Linear
Differential
Equations.
Problems
page
221
Problem
number
:
Problem
19(c)
Date
solved
:
Monday, March 31, 2025 at 08:18:43 AM
CAS
classification
:
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]
ode:=(x*cos(y(x))+sin(x))*diff(diff(y(x),x),x)-x*diff(y(x),x)^2*sin(y(x))+2*(cos(y(x))+cos(x))*diff(y(x),x) = y(x)*sin(x); dsolve(ode,y(x), singsol=all);
ode=(x*Cos[y[x]]+Sin[x])*D[y[x],{x,2}]- x*D[y[x],x]^2*Sin[y[x]] + 2*(Cos[y[x]]+Cos[x])*D[y[x],x]==y[x]*Sin[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*sin(y(x))*Derivative(y(x), x)**2 + (x*cos(y(x)) + sin(x))*Derivative(y(x), (x, 2)) + (2*cos(x) + 2*cos(y(x)))*Derivative(y(x), x) - y(x)*sin(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
ZeroDivisionError : polynomial division