67.2.47 problem Problem 18(L)

Internal problem ID [13933]
Book : APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Dobrushkin. CRC Press 2015
Section : Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221
Problem number : Problem 18(L)
Date solved : Monday, March 31, 2025 at 08:18:35 AM
CAS classification : [[_2nd_order, _exact, _linear, _nonhomogeneous]]

\begin{align*} x \ln \left (x \right ) y^{\prime \prime }+2 y^{\prime }-\frac {y}{x}&=1 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 19
ode:=x*ln(x)*diff(diff(y(x),x),x)+2*diff(y(x),x)-y(x)/x = 1; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1}{\ln \left (x \right )}+x +\frac {c_2 x}{\ln \left (x \right )} \]
Mathematica. Time used: 0.032 (sec). Leaf size: 23
ode=x*Log[x]*D[y[x],{x,2}]+2*D[y[x],x]-y[x]/x==1; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {x \log (x)+(-1+c_2) x+c_1}{\log (x)} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*log(x)*Derivative(y(x), (x, 2)) + 2*Derivative(y(x), x) - 1 - y(x)/x,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (x*(-x*log(x)*Derivative(y(x), (x, 2)) + 1) + y(x))/(2*x) cannot be solved by the factorable group method