Internal
problem
ID
[13920]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
4,
Second
and
Higher
Order
Linear
Differential
Equations.
Problems
page
221
Problem
number
:
Problem
13
Date
solved
:
Monday, March 31, 2025 at 08:18:08 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)-4*x^2*diff(y(x),x)+(x^2+1)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-4*x^2*D[y[x],x]+(x^2+1)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-4*x**2*Derivative(y(x), x) + x**2*Derivative(y(x), (x, 2)) + (x**2 + 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
ValueError : Expected Expr or iterable but got None