Internal
problem
ID
[13918]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
4,
Second
and
Higher
Order
Linear
Differential
Equations.
Problems
page
221
Problem
number
:
Problem
5(f)
Date
solved
:
Monday, March 31, 2025 at 08:18:04 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=diff(diff(y(x),x),x)-(x-1)*diff(y(x),x)+x^2*y(x) = tan(x); ic:=y(0) = 0, D(y)(0) = 0; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,2}]-(x-1)*D[y[x],x]+x^2*y[x]==Tan[x]; ic={y[0]==0,Derivative[1][y][0] ==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*y(x) - (x - 1)*Derivative(y(x), x) - tan(x) + Derivative(y(x), (x, 2)),0) ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 0} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (x**2*y(x) - tan(x) + Derivative(y(x), (x, 2)))/(x - 1) cannot be solved by the factorable group method