67.2.24 problem Problem 3(b)

Internal problem ID [13910]
Book : APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Dobrushkin. CRC Press 2015
Section : Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221
Problem number : Problem 3(b)
Date solved : Monday, March 31, 2025 at 08:17:49 AM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 138
ode:=diff(diff(diff(y(x),x),x),x)-5*diff(diff(y(x),x),x)+diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_1 \,{\mathrm e}^{\frac {x \left (22+\left (116+6 \sqrt {78}\right )^{{2}/{3}}\right )}{2 \left (116+6 \sqrt {78}\right )^{{1}/{3}}}}-c_2 \sin \left (\frac {\sqrt {3}\, \left (\left (116+6 \sqrt {3}\, \sqrt {26}\right )^{{2}/{3}}-22\right ) x}{6 \left (116+6 \sqrt {3}\, \sqrt {26}\right )^{{1}/{3}}}\right )+c_3 \cos \left (\frac {\sqrt {3}\, \left (\left (116+6 \sqrt {3}\, \sqrt {26}\right )^{{2}/{3}}-22\right ) x}{6 \left (116+6 \sqrt {3}\, \sqrt {26}\right )^{{1}/{3}}}\right )\right ) {\mathrm e}^{-\frac {\left (22+\left (116+6 \sqrt {78}\right )^{{2}/{3}}-10 \left (116+6 \sqrt {78}\right )^{{1}/{3}}\right ) x}{6 \left (116+6 \sqrt {78}\right )^{{1}/{3}}}} \]
Mathematica. Time used: 0.003 (sec). Leaf size: 81
ode=D[y[x],{x,3}]-5*D[y[x],{x,2}]+D[y[x],x]-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_2 \exp \left (x \text {Root}\left [\text {$\#$1}^3-5 \text {$\#$1}^2+\text {$\#$1}-1\&,2\right ]\right )+c_3 \exp \left (x \text {Root}\left [\text {$\#$1}^3-5 \text {$\#$1}^2+\text {$\#$1}-1\&,3\right ]\right )+c_1 \exp \left (x \text {Root}\left [\text {$\#$1}^3-5 \text {$\#$1}^2+\text {$\#$1}-1\&,1\right ]\right ) \]
Sympy. Time used: 0.427 (sec). Leaf size: 226
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x) + Derivative(y(x), x) - 5*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{\frac {x \left (- \sqrt [3]{2} \sqrt [3]{3 \sqrt {78} + 58} - \frac {11 \cdot 2^{\frac {2}{3}}}{\sqrt [3]{3 \sqrt {78} + 58}} + 10\right )}{6}} \sin {\left (\frac {\sqrt [3]{2} \sqrt {3} x \left (- \sqrt [3]{3 \sqrt {78} + 58} + \frac {11 \sqrt [3]{2}}{\sqrt [3]{3 \sqrt {78} + 58}}\right )}{6} \right )} + C_{2} e^{\frac {x \left (- \sqrt [3]{2} \sqrt [3]{3 \sqrt {78} + 58} - \frac {11 \cdot 2^{\frac {2}{3}}}{\sqrt [3]{3 \sqrt {78} + 58}} + 10\right )}{6}} \cos {\left (\frac {\sqrt [3]{2} \sqrt {3} x \left (- \sqrt [3]{3 \sqrt {78} + 58} + \frac {11 \sqrt [3]{2}}{\sqrt [3]{3 \sqrt {78} + 58}}\right )}{6} \right )} + C_{3} e^{\frac {x \left (\frac {11 \cdot 2^{\frac {2}{3}}}{\sqrt [3]{3 \sqrt {78} + 58}} + 5 + \sqrt [3]{2} \sqrt [3]{3 \sqrt {78} + 58}\right )}{3}} \]