Internal
problem
ID
[13890]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
4,
Second
and
Higher
Order
Linear
Differential
Equations.
Problems
page
221
Problem
number
:
Problem
1(d)
Date
solved
:
Monday, March 31, 2025 at 08:16:33 AM
CAS
classification
:
[[_high_order, _missing_y]]
ode:=diff(diff(diff(diff(diff(y(x),x),x),x),x),x)-diff(diff(diff(diff(y(x),x),x),x),x)+diff(y(x),x) = 2*x^2+3; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,5}]-D[y[x],{x,4}] +D[y[x],x]==2*x^2+3; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x**2 + Derivative(y(x), x) - Derivative(y(x), (x, 4)) + Derivative(y(x), (x, 5)) - 3,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : Cannot find 5 solutions to the homogeneous equation necessary to apply undetermined coefficients to -2*x**2 + Derivative(y(x), x) - Derivative(y(x), (x, 4)) + Derivative(y(x), (x, 5)) - 3 (number of terms != order)