Internal
problem
ID
[13861]
Book
:
Differential
equations
and
the
calculus
of
variations
by
L.
ElSGOLTS.
MIR
PUBLISHERS,
MOSCOW,
Third
printing
1977.
Section
:
Chapter
2,
DIFFERENTIAL
EQUATIONS
OF
THE
SECOND
ORDER
AND
HIGHER.
Problems
page
172
Problem
number
:
Problem
47
Date
solved
:
Monday, March 31, 2025 at 08:15:29 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
Using reduction of order method given that one solution is
ode:=x^3*diff(diff(y(x),x),x)-x*diff(y(x),x)+y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^3*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 2)) - x*Derivative(y(x), x) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (x**3*Derivative(y(x), (x, 2)) + y(x))/x cannot be solved by the factorable group method