Internal
problem
ID
[13849]
Book
:
Differential
equations
and
the
calculus
of
variations
by
L.
ElSGOLTS.
MIR
PUBLISHERS,
MOSCOW,
Third
printing
1977.
Section
:
Chapter
2,
DIFFERENTIAL
EQUATIONS
OF
THE
SECOND
ORDER
AND
HIGHER.
Problems
page
172
Problem
number
:
Problem
30
Date
solved
:
Monday, March 31, 2025 at 08:15:08 AM
CAS
classification
:
[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]
ode:=y(x)*diff(diff(y(x),x),x)+diff(y(x),x)^2 = y(x)*diff(y(x),x)/(x^2+1)^(1/2); dsolve(ode,y(x), singsol=all);
ode=y[x]*D[y[x],{x,2}]+D[y[x],x]^2== y[x]*D[y[x],x]/Sqrt[1+x^2]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(y(x)*Derivative(y(x), (x, 2)) + Derivative(y(x), x)**2 - y(x)*Derivative(y(x), x)/sqrt(x**2 + 1),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (sqrt((-4*x**2*Derivative(y(x), (x, 2)) + y(x) - 4*Derivative(y(x), (x, 2)))*y(x)) + y(x))/(2*sqrt(x**2 + 1)) cannot be solved by the factorable group method