66.2.18 problem Problem 18

Internal problem ID [13846]
Book : Differential equations and the calculus of variations by L. ElSGOLTS. MIR PUBLISHERS, MOSCOW, Third printing 1977.
Section : Chapter 2, DIFFERENTIAL EQUATIONS OF THE SECOND ORDER AND HIGHER. Problems page 172
Problem number : Problem 18
Date solved : Monday, March 31, 2025 at 08:15:00 AM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\begin{align*} y^{\prime \prime }&=3 \sqrt {y} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1\\ y^{\prime }\left (0\right )&=2 \end{align*}

Maple. Time used: 0.104 (sec). Leaf size: 11
ode:=diff(diff(y(x),x),x) = 3*y(x)^(1/2); 
ic:=y(0) = 1, D(y)(0) = 2; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = \frac {\left (x +2\right )^{4}}{16} \]
Mathematica. Time used: 0.067 (sec). Leaf size: 14
ode=D[y[x],{x,2}]==3*Sqrt[y[x]]; 
ic={y[0]==1,Derivative[1][y][0] ==2}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{16} (x+2)^4 \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-3*sqrt(y(x)) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 2} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out