66.2.6 problem Problem 6

Internal problem ID [13834]
Book : Differential equations and the calculus of variations by L. ElSGOLTS. MIR PUBLISHERS, MOSCOW, Third printing 1977.
Section : Chapter 2, DIFFERENTIAL EQUATIONS OF THE SECOND ORDER AND HIGHER. Problems page 172
Problem number : Problem 6
Date solved : Monday, March 31, 2025 at 08:14:39 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+y&=\cosh \left (x \right ) \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 17
ode:=diff(diff(y(x),x),x)+y(x) = cosh(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sin \left (x \right ) c_2 +\cos \left (x \right ) c_1 +\frac {\cosh \left (x \right )}{2} \]
Mathematica. Time used: 0.033 (sec). Leaf size: 22
ode=D[y[x],{x,2}]+y[x]==Cosh[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {\cosh (x)}{2}+c_1 \cos (x)+c_2 \sin (x) \]
Sympy. Time used: 0.072 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - cosh(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sin {\left (x \right )} + C_{2} \cos {\left (x \right )} + \frac {\cosh {\left (x \right )}}{2} \]