Internal
problem
ID
[13827]
Book
:
Differential
equations
and
the
calculus
of
variations
by
L.
ElSGOLTS.
MIR
PUBLISHERS,
MOSCOW,
Third
printing
1977.
Section
:
Chapter
1,
First-Order
Differential
Equations.
Problems
page
88
Problem
number
:
Problem
65
Date
solved
:
Monday, March 31, 2025 at 08:14:27 AM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _dAlembert]
ode:=diff(y(x),x)^2-2*x*diff(y(x),x)+y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]^2-2*x*D[y[x],x]+y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x*Derivative(y(x), x) + y(x) + Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -x - sqrt(x**2 - y(x)) + Derivative(y(x), x) cannot be solved by the factorable group method