Internal
problem
ID
[13825]
Book
:
Differential
equations
and
the
calculus
of
variations
by
L.
ElSGOLTS.
MIR
PUBLISHERS,
MOSCOW,
Third
printing
1977.
Section
:
Chapter
1,
First-Order
Differential
Equations.
Problems
page
88
Problem
number
:
Problem
63
Date
solved
:
Monday, March 31, 2025 at 08:14:22 AM
CAS
classification
:
[[_homogeneous, `class G`], _exact, _rational, _Bernoulli]
ode:=3*x*y(x)^2*diff(y(x),x)+y(x)^3-2*x = 0; dsolve(ode,y(x), singsol=all);
ode=3*x*y[x]^2*D[y[x],x]+y[x]^3-2*x==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(3*x*y(x)**2*Derivative(y(x), x) - 2*x + y(x)**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)