66.1.44 problem Problem 58

Internal problem ID [13820]
Book : Differential equations and the calculus of variations by L. ElSGOLTS. MIR PUBLISHERS, MOSCOW, Third printing 1977.
Section : Chapter 1, First-Order Differential Equations. Problems page 88
Problem number : Problem 58
Date solved : Monday, March 31, 2025 at 08:14:05 AM
CAS classification : [_Bernoulli]

\begin{align*} x y^{\prime }-y^{2} \ln \left (x \right )+y&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 13
ode:=x*diff(y(x),x)-y(x)^2*ln(x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {1}{1+c_1 x +\ln \left (x \right )} \]
Mathematica. Time used: 0.149 (sec). Leaf size: 20
ode=x*D[y[x],x]-y[x]^2*Log[x]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {1}{\log (x)+c_1 x+1} \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.226 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) - y(x)**2*log(x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {1}{C_{1} x + \log {\left (x \right )} + 1} \]