66.1.2 problem Problem 2

Internal problem ID [13778]
Book : Differential equations and the calculus of variations by L. ElSGOLTS. MIR PUBLISHERS, MOSCOW, Third printing 1977.
Section : Chapter 1, First-Order Differential Equations. Problems page 88
Problem number : Problem 2
Date solved : Monday, March 31, 2025 at 08:11:23 AM
CAS classification : [[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} 12 x +6 y-9+\left (5 x +2 y-3\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.265 (sec). Leaf size: 297
ode:=12*x+6*y(x)-9+(5*x+2*y(x)-3)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {3 \left (\left (x -1\right ) \sqrt {x^{2} \operatorname {RootOf}\left (8 \textit {\_Z}^{5} x^{2} {\mathrm e}^{2 c_1} \operatorname {RootOf}\left (\textit {\_Z}^{2}-2 x \,{\mathrm e}^{c_1}, \operatorname {index} =1\right )+20 \textit {\_Z}^{3} x^{2} {\mathrm e}^{2 c_1} \operatorname {RootOf}\left (\textit {\_Z}^{2}-2 x \,{\mathrm e}^{c_1}, \operatorname {index} =1\right )-1\right ) \left ({\mathrm e}^{-3 c_1} \operatorname {RootOf}\left (\textit {\_Z}^{2}-2 x \,{\mathrm e}^{c_1}, \operatorname {index} =1\right )-40 \operatorname {RootOf}\left (8 \textit {\_Z}^{5} x^{2} {\mathrm e}^{2 c_1} \operatorname {RootOf}\left (\textit {\_Z}^{2}-2 x \,{\mathrm e}^{c_1}, \operatorname {index} =1\right )+20 \textit {\_Z}^{3} x^{2} {\mathrm e}^{2 c_1} \operatorname {RootOf}\left (\textit {\_Z}^{2}-2 x \,{\mathrm e}^{c_1}, \operatorname {index} =1\right )-1\right )^{3} x^{3}\right )}+\frac {{\mathrm e}^{-\frac {5 c_1}{2}} \sqrt {2}\, x}{6}\right )}{2 \sqrt {x^{2} \operatorname {RootOf}\left (8 \textit {\_Z}^{5} x^{2} {\mathrm e}^{2 c_1} \operatorname {RootOf}\left (\textit {\_Z}^{2}-2 x \,{\mathrm e}^{c_1}, \operatorname {index} =1\right )+20 \textit {\_Z}^{3} x^{2} {\mathrm e}^{2 c_1} \operatorname {RootOf}\left (\textit {\_Z}^{2}-2 x \,{\mathrm e}^{c_1}, \operatorname {index} =1\right )-1\right ) \left ({\mathrm e}^{-3 c_1} \operatorname {RootOf}\left (\textit {\_Z}^{2}-2 x \,{\mathrm e}^{c_1}, \operatorname {index} =1\right )-40 \operatorname {RootOf}\left (8 \textit {\_Z}^{5} x^{2} {\mathrm e}^{2 c_1} \operatorname {RootOf}\left (\textit {\_Z}^{2}-2 x \,{\mathrm e}^{c_1}, \operatorname {index} =1\right )+20 \textit {\_Z}^{3} x^{2} {\mathrm e}^{2 c_1} \operatorname {RootOf}\left (\textit {\_Z}^{2}-2 x \,{\mathrm e}^{c_1}, \operatorname {index} =1\right )-1\right )^{3} x^{3}\right )}} \]
Mathematica. Time used: 60.061 (sec). Leaf size: 1121
ode=(12*x+6*y[x]-9)+(5*x+2*y[x]-3)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solution too large to show}\end{align*}

Sympy. Time used: 1.114 (sec). Leaf size: 34
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(12*x + (5*x + 2*y(x) - 3)*Derivative(y(x), x) + 6*y(x) - 9,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \log {\left (x \right )} = C_{1} - \log {\left (\left (\frac {3}{2} + \frac {y{\left (x \right )} - \frac {3}{2}}{x}\right )^{\frac {2}{5}} \left (4 + \frac {y{\left (x \right )} - \frac {3}{2}}{x}\right )^{\frac {3}{5}} \right )} \]