Internal
problem
ID
[13677]
Book
:
AN
INTRODUCTION
TO
ORDINARY
DIFFERENTIAL
EQUATIONS
by
JAMES
C.
ROBINSON.
Cambridge
University
Press
2004
Section
:
Chapter
10,
Two
tricks
for
nonlinear
equations.
Exercises
page
97
Problem
number
:
10.4
(ii)
Date
solved
:
Monday, March 31, 2025 at 08:08:08 AM
CAS
classification
:
[[_homogeneous, `class A`], _dAlembert]
ode:=diff(x(t),t) = (x(t)^2+t*(t^2+x(t)^2)^(1/2))/x(t)/t; dsolve(ode,x(t), singsol=all);
ode=D[x[t],t]==(x[t]^2+t*Sqrt[t^2+x[t]^2])/(t*x[t]); ic={}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(Derivative(x(t), t) - (t*sqrt(t**2 + x(t)**2) + x(t)**2)/(t*x(t)),0) ics = {} dsolve(ode,func=x(t),ics=ics)
TypeError : cannot determine truth value of Relational