65.5.9 problem 10.4 (ii)

Internal problem ID [13677]
Book : AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C. ROBINSON. Cambridge University Press 2004
Section : Chapter 10, Two tricks for nonlinear equations. Exercises page 97
Problem number : 10.4 (ii)
Date solved : Monday, March 31, 2025 at 08:08:08 AM
CAS classification : [[_homogeneous, `class A`], _dAlembert]

\begin{align*} x^{\prime }&=\frac {x^{2}+t \sqrt {t^{2}+x^{2}}}{t x} \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 28
ode:=diff(x(t),t) = (x(t)^2+t*(t^2+x(t)^2)^(1/2))/x(t)/t; 
dsolve(ode,x(t), singsol=all);
 
\[ \frac {\ln \left (t \right ) t -c_1 t -\sqrt {t^{2}+x^{2}}}{t} = 0 \]
Mathematica. Time used: 0.312 (sec). Leaf size: 54
ode=D[x[t],t]==(x[t]^2+t*Sqrt[t^2+x[t]^2])/(t*x[t]); 
ic={}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to -t \sqrt {\log ^2(t)+2 c_1 \log (t)-1+c_1{}^2} \\ x(t)\to t \sqrt {\log ^2(t)+2 c_1 \log (t)-1+c_1{}^2} \\ \end{align*}
Sympy
from sympy import * 
t = symbols("t") 
x = Function("x") 
ode = Eq(Derivative(x(t), t) - (t*sqrt(t**2 + x(t)**2) + x(t)**2)/(t*x(t)),0) 
ics = {} 
dsolve(ode,func=x(t),ics=ics)
 
TypeError : cannot determine truth value of Relational