Internal
problem
ID
[13673]
Book
:
AN
INTRODUCTION
TO
ORDINARY
DIFFERENTIAL
EQUATIONS
by
JAMES
C.
ROBINSON.
Cambridge
University
Press
2004
Section
:
Chapter
10,
Two
tricks
for
nonlinear
equations.
Exercises
page
97
Problem
number
:
10.2
Date
solved
:
Monday, March 31, 2025 at 08:07:57 AM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)]`]]
ode:=exp(-y(x))*sec(x)+2*cos(x)-exp(-y(x))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=Exp[-y[x]]*Sec[x]+2*Cos[x]-Exp[-y[x]]*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*cos(x) - exp(-y(x))*Derivative(y(x), x) + exp(-y(x))/cos(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
TypeError : exp takes exactly 1 argument (2 given)