Internal
problem
ID
[13669]
Book
:
AN
INTRODUCTION
TO
ORDINARY
DIFFERENTIAL
EQUATIONS
by
JAMES
C.
ROBINSON.
Cambridge
University
Press
2004
Section
:
Chapter
10,
Two
tricks
for
nonlinear
equations.
Exercises
page
97
Problem
number
:
10.1
(i)
Date
solved
:
Monday, March 31, 2025 at 08:07:17 AM
CAS
classification
:
[_exact, [_1st_order, `_with_symmetry_[F(x),G(x)]`], [_Abel, `2nd type`, `class A`]]
ode:=2*x*y(x)-sec(x)^2+(x^2+2*y(x))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(2*x*y[x]- Sec[x]^2)+(x^2+2*y[x])*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x*y(x) + (x**2 + 2*y(x))*Derivative(y(x), x) - 1/cos(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out