Internal
problem
ID
[13667]
Book
:
AN
INTRODUCTION
TO
ORDINARY
DIFFERENTIAL
EQUATIONS
by
JAMES
C.
ROBINSON.
Cambridge
University
Press
2004
Section
:
Chapter
9,
First
order
linear
equations
and
the
integrating
factor.
Exercises
page
86
Problem
number
:
9.1
(viii)
Date
solved
:
Monday, March 31, 2025 at 08:07:12 AM
CAS
classification
:
[_linear]
With initial conditions
ode:=diff(x(t),t)+(a+1/t)*x(t) = b; ic:=x(1) = x__0; dsolve([ode,ic],x(t), singsol=all);
ode=D[x[t],t]+(a+1/t)*x[t]==b; ic={x[1]==x0}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") a = symbols("a") b = symbols("b") x = Function("x") ode = Eq(-b + (a + 1/t)*x(t) + Derivative(x(t), t),0) ics = {x(1): x__0} dsolve(ode,func=x(t),ics=ics)