65.4.6 problem 9.1 (vi)

Internal problem ID [13665]
Book : AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C. ROBINSON. Cambridge University Press 2004
Section : Chapter 9, First order linear equations and the integrating factor. Exercises page 86
Problem number : 9.1 (vi)
Date solved : Monday, March 31, 2025 at 08:07:08 AM
CAS classification : [_linear]

\begin{align*} y^{\prime }+2 y \cot \left (x \right )&=5 \end{align*}

With initial conditions

\begin{align*} y \left (\frac {\pi }{2}\right )&=1 \end{align*}

Maple. Time used: 0.029 (sec). Leaf size: 29
ode:=diff(y(x),x)+2*y(x)*cot(x) = 5; 
ic:=y(1/2*Pi) = 1; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = \frac {-10 x +5 \sin \left (2 x \right )-4+5 \pi }{-2+2 \cos \left (2 x \right )} \]
Mathematica. Time used: 0.044 (sec). Leaf size: 30
ode=D[y[x],x]+2*y[x]*Cot[x]==5; 
ic={y[Pi/2]==1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \csc ^2(x) \left (\int _{\frac {\pi }{2}}^x5 \sin ^2(K[1])dK[1]+1\right ) \]
Sympy. Time used: 1.039 (sec). Leaf size: 27
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*y(x)/tan(x) + Derivative(y(x), x) - 5,0) 
ics = {y(pi/2): 1} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {\frac {5 x}{2} - \frac {5 \sin {\left (2 x \right )}}{4} - \frac {5 \pi }{4} + 1}{\sin ^{2}{\left (x \right )}} \]