Internal
problem
ID
[13665]
Book
:
AN
INTRODUCTION
TO
ORDINARY
DIFFERENTIAL
EQUATIONS
by
JAMES
C.
ROBINSON.
Cambridge
University
Press
2004
Section
:
Chapter
9,
First
order
linear
equations
and
the
integrating
factor.
Exercises
page
86
Problem
number
:
9.1
(vi)
Date
solved
:
Monday, March 31, 2025 at 08:07:08 AM
CAS
classification
:
[_linear]
With initial conditions
ode:=diff(y(x),x)+2*y(x)*cot(x) = 5; ic:=y(1/2*Pi) = 1; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],x]+2*y[x]*Cot[x]==5; ic={y[Pi/2]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*y(x)/tan(x) + Derivative(y(x), x) - 5,0) ics = {y(pi/2): 1} dsolve(ode,func=y(x),ics=ics)