Internal
problem
ID
[13626]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
13,
Limit
cycles
and
periodic
solutions.
Section
13.4,
Exercises
page
706
Problem
number
:
2
Date
solved
:
Monday, March 31, 2025 at 08:03:04 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = y(t)+x(t)/(x(t)^2+y(t)^2)^(1/2)*(1-x(t)^2-y(t)^2), diff(y(t),t) = -x(t)+y(t)/(x(t)^2+y(t)^2)^(1/2)*(1-x(t)^2-y(t)^2)]; dsolve(ode);
ode={D[x[t],t]==y[t]+x[t]/Sqrt[x[t]^2+y[t]^2]*(1-(x[t]^2+y[t]^2)),D[y[t],t]==-x[t]+y[t]/Sqrt[x[t]^2+y[t]^2]*(1-(x[t]^2+y[t]^2))}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
Not solved
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-y(t) + Derivative(x(t), t) - (-x(t)**2 - y(t)**2 + 1)*x(t)/sqrt(x(t)**2 + y(t)**2),0),Eq(x(t) + Derivative(y(t), t) - (-x(t)**2 - y(t)**2 + 1)*y(t)/sqrt(x(t)**2 + y(t)**2),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)
Timed Out