Internal
problem
ID
[13610]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
12,
Sturm-Liouville
problems.
Section
12.1,
Exercises
page
596
Problem
number
:
4
Date
solved
:
Monday, March 31, 2025 at 08:02:37 AM
CAS
classification
:
[[_2nd_order, _missing_x]]
With initial conditions
ode:=diff(diff(y(x),x),x)+lambda*y(x) = 0; ic:=D(y)(0) = 0, D(y)(L) = 0; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,2}]+\[Lambda]*y[x]==0; ic={Derivative[1][y][0]==0,Derivative[1][y][L]==0}; DSolve[{ode,ic},{y[x]},x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") lambda_ = symbols("lambda_") y = Function("y") ode = Eq(lambda_*y(x) + Derivative(y(x), (x, 2)),0) ics = {Subs(Derivative(y(x), x), x, 0): 0, Derivative(y(L), L): 0} dsolve(ode,func=y(x),ics=ics)