Internal
problem
ID
[13597]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
11,
The
nth
order
homogeneous
linear
differential
equation.
Section
11.8,
Exercises
page
583
Problem
number
:
1
(c)
Date
solved
:
Monday, March 31, 2025 at 08:02:13 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=t^2*diff(diff(x(t),t),t)+(2*t^3+7*t)*diff(x(t),t)+(8*t^2+8)*x(t) = 0; dsolve(ode,x(t), singsol=all);
ode=t^2*D[x[t],{t,2}]+(2*t^3+7*t)*D[x[t],t]+(8*t^2+8)*x[t]==0; ic={}; DSolve[{ode,ic},{x[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(t**2*Derivative(x(t), (t, 2)) + (8*t**2 + 8)*x(t) + (2*t**3 + 7*t)*Derivative(x(t), t),0) ics = {} dsolve(ode,func=x(t),ics=ics)