64.21.2 problem 1 (b)

Internal problem ID [13592]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 11, The nth order homogeneous linear differential equation. Section 11.6, Exercises page 567
Problem number : 1 (b)
Date solved : Monday, March 31, 2025 at 08:02:05 AM
CAS classification : [[_3rd_order, _with_linear_symmetries]]

\begin{align*} t^{3} x^{\prime \prime \prime }-3 t^{2} x^{\prime \prime }+6 t x^{\prime }-6 x&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 16
ode:=t^3*diff(diff(diff(x(t),t),t),t)-3*t^2*diff(diff(x(t),t),t)+6*t*diff(x(t),t)-6*x(t) = 0; 
dsolve(ode,x(t), singsol=all);
 
\[ x = t \left (c_1 \,t^{2}+c_2 t +c_3 \right ) \]
Mathematica. Time used: 0.03 (sec). Leaf size: 507
ode=t^3*D[x[t],{t,3}]-3*t^2*D[x[t],{t,2}]+6*D[x[t],t]-6*x[t]==0; 
ic={}; 
DSolve[{ode,ic},{x[t]},t,IncludeSingularSolutions->True]
 
\[ x(t)\to c_3 6^{-\text {Root}\left [\text {$\#$1}^3-6 \text {$\#$1}^2+5 \text {$\#$1}-6\&,3\right ]} t^{\text {Root}\left [\text {$\#$1}^3-6 \text {$\#$1}^2+5 \text {$\#$1}-6\&,3\right ]} \, _1F_2\left (-\text {Root}\left [\text {$\#$1}^3-6 \text {$\#$1}^2+5 \text {$\#$1}-6\&,3\right ];1+\text {Root}\left [\text {$\#$1}^3-6 \text {$\#$1}^2+5 \text {$\#$1}-6\&,1\right ]-\text {Root}\left [\text {$\#$1}^3-6 \text {$\#$1}^2+5 \text {$\#$1}-6\&,3\right ],1+\text {Root}\left [\text {$\#$1}^3-6 \text {$\#$1}^2+5 \text {$\#$1}-6\&,2\right ]-\text {Root}\left [\text {$\#$1}^3-6 \text {$\#$1}^2+5 \text {$\#$1}-6\&,3\right ];-\frac {6}{t}\right )+c_2 6^{-\text {Root}\left [\text {$\#$1}^3-6 \text {$\#$1}^2+5 \text {$\#$1}-6\&,2\right ]} t^{\text {Root}\left [\text {$\#$1}^3-6 \text {$\#$1}^2+5 \text {$\#$1}-6\&,2\right ]} \, _1F_2\left (-\text {Root}\left [\text {$\#$1}^3-6 \text {$\#$1}^2+5 \text {$\#$1}-6\&,2\right ];1+\text {Root}\left [\text {$\#$1}^3-6 \text {$\#$1}^2+5 \text {$\#$1}-6\&,1\right ]-\text {Root}\left [\text {$\#$1}^3-6 \text {$\#$1}^2+5 \text {$\#$1}-6\&,2\right ],1-\text {Root}\left [\text {$\#$1}^3-6 \text {$\#$1}^2+5 \text {$\#$1}-6\&,2\right ]+\text {Root}\left [\text {$\#$1}^3-6 \text {$\#$1}^2+5 \text {$\#$1}-6\&,3\right ];-\frac {6}{t}\right )+c_1 6^{-\text {Root}\left [\text {$\#$1}^3-6 \text {$\#$1}^2+5 \text {$\#$1}-6\&,1\right ]} t^{\text {Root}\left [\text {$\#$1}^3-6 \text {$\#$1}^2+5 \text {$\#$1}-6\&,1\right ]} \, _1F_2\left (-\text {Root}\left [\text {$\#$1}^3-6 \text {$\#$1}^2+5 \text {$\#$1}-6\&,1\right ];1-\text {Root}\left [\text {$\#$1}^3-6 \text {$\#$1}^2+5 \text {$\#$1}-6\&,1\right ]+\text {Root}\left [\text {$\#$1}^3-6 \text {$\#$1}^2+5 \text {$\#$1}-6\&,2\right ],1-\text {Root}\left [\text {$\#$1}^3-6 \text {$\#$1}^2+5 \text {$\#$1}-6\&,1\right ]+\text {Root}\left [\text {$\#$1}^3-6 \text {$\#$1}^2+5 \text {$\#$1}-6\&,3\right ];-\frac {6}{t}\right ) \]
Sympy. Time used: 0.196 (sec). Leaf size: 14
from sympy import * 
t = symbols("t") 
x = Function("x") 
ode = Eq(t**3*Derivative(x(t), (t, 3)) - 3*t**2*Derivative(x(t), (t, 2)) + 6*t*Derivative(x(t), t) - 6*x(t),0) 
ics = {} 
dsolve(ode,func=x(t),ics=ics)
 
\[ x{\left (t \right )} = t \left (C_{1} + C_{2} t + C_{3} t^{2}\right ) \]