64.17.1 problem 1

Internal problem ID [13550]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 7, Systems of linear differential equations. Section 7.3. Exercises page 299
Problem number : 1
Date solved : Monday, March 31, 2025 at 08:01:05 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=3 x \left (t \right )+4 y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=2 x \left (t \right )+y \left (t \right ) \end{align*}

With initial conditions

\begin{align*} x \left (0\right ) = 1\\ y \left (0\right ) = 2 \end{align*}

Maple. Time used: 0.115 (sec). Leaf size: 29
ode:=[diff(x(t),t) = 3*x(t)+4*y(t), diff(y(t),t) = 2*x(t)+y(t)]; 
ic:=x(0) = 1y(0) = 2; 
dsolve([ode,ic]);
 
\begin{align*} x \left (t \right ) &= 2 \,{\mathrm e}^{5 t}-{\mathrm e}^{-t} \\ y \left (t \right ) &= {\mathrm e}^{5 t}+{\mathrm e}^{-t} \\ \end{align*}
Mathematica. Time used: 0.004 (sec). Leaf size: 34
ode={D[x[t],t]==3*x[t]+4*y[t],D[y[t],t]==2*x[t]+y[t]}; 
ic={x[0]==1,y[0]==2}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to e^{-t} \left (2 e^{6 t}-1\right ) \\ y(t)\to e^{-t}+e^{5 t} \\ \end{align*}
Sympy. Time used: 0.096 (sec). Leaf size: 29
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-3*x(t) - 4*y(t) + Derivative(x(t), t),0),Eq(-2*x(t) - y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = - C_{1} e^{- t} + 2 C_{2} e^{5 t}, \ y{\left (t \right )} = C_{1} e^{- t} + C_{2} e^{5 t}\right ] \]