Internal
problem
ID
[13533]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
7,
Systems
of
linear
differential
equations.
Section
7.1.
Exercises
page
277
Problem
number
:
1
Date
solved
:
Monday, March 31, 2025 at 08:00:38 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t)+diff(y(t),t)-2*x(t)-4*y(t) = exp(t), diff(x(t),t)+diff(y(t),t)-y(t) = exp(4*t)]; dsolve(ode);
ode={D[x[t],t]+D[y[t],t]-2*x[t]-4*y[t]==Exp[t],D[x[t],t]+D[y[t],t]-y[t]==Exp[4*t]}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-2*x(t) - 4*y(t) - exp(t) + Derivative(x(t), t) + Derivative(y(t), t),0),Eq(-y(t) - exp(4*t) + Derivative(x(t), t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)