7.13.26 problem 27 (b)

Internal problem ID [425]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 3. Power series methods. Section 3.1 (Introduction). Problems at page 206
Problem number : 27 (b)
Date solved : Saturday, March 29, 2025 at 04:53:20 PM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }&=y \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1\\ y^{\prime }\left (0\right )&=1\\ y^{\prime \prime }\left (0\right )&=-1 \end{align*}

Maple. Time used: 0.107 (sec). Leaf size: 38
ode:=diff(diff(diff(y(x),x),x),x) = y(x); 
ic:=y(0) = 1, D(y)(0) = 1, (D@@2)(y)(0) = -1; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = \frac {{\mathrm e}^{x}}{3}+\frac {2 \sqrt {3}\, {\mathrm e}^{-\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right )}{3}+\frac {2 \,{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right )}{3} \]
Mathematica. Time used: 0.004 (sec). Leaf size: 55
ode=D[y[x],{x,3}]==y[x]; 
ic={y[0]==1,Derivative[1][y][0] ==1,Derivative[2][y][0] ==-1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{3} e^{-x/2} \left (e^{3 x/2}+2 \sqrt {3} \sin \left (\frac {\sqrt {3} x}{2}\right )+2 \cos \left (\frac {\sqrt {3} x}{2}\right )\right ) \]
Sympy. Time used: 0.175 (sec). Leaf size: 44
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x) + Derivative(y(x), (x, 3)),0) 
ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 1, Subs(Derivative(y(x), (x, 2)), x, 0): -1} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (\frac {2 \sqrt {3} \sin {\left (\frac {\sqrt {3} x}{2} \right )}}{3} + \frac {2 \cos {\left (\frac {\sqrt {3} x}{2} \right )}}{3}\right ) e^{- \frac {x}{2}} + \frac {e^{x}}{3} \]