Internal
problem
ID
[13477]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
4,
Section
4.5.
The
Cauchy-Euler
Equation.
Exercises
page
169
Problem
number
:
18
Date
solved
:
Monday, March 31, 2025 at 07:59:03 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)+4*y(x) = 4*sin(ln(x)); dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]+4*y[x]==4*Sin[Log[x]]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) + 4*y(x) - 4*sin(log(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)