64.13.18 problem 18

Internal problem ID [13477]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169
Problem number : 18
Date solved : Monday, March 31, 2025 at 07:59:03 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} x^{2} y^{\prime \prime }+x y^{\prime }+4 y&=4 \sin \left (\ln \left (x \right )\right ) \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 24
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)+4*y(x) = 4*sin(ln(x)); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sin \left (2 \ln \left (x \right )\right ) c_2 +\cos \left (2 \ln \left (x \right )\right ) c_1 +\frac {4 \sin \left (\ln \left (x \right )\right )}{3} \]
Mathematica. Time used: 0.101 (sec). Leaf size: 61
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]+4*y[x]==4*Sin[Log[x]]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \sin (2 \log (x)) \int _1^x\frac {2 \cos (2 \log (K[1])) \sin (\log (K[1]))}{K[1]}dK[1]+c_2 \sin (2 \log (x))+\cos (2 \log (x)) \left (-\frac {4}{3} \sin ^3(\log (x))+c_1\right ) \]
Sympy. Time used: 0.319 (sec). Leaf size: 27
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) + 4*y(x) - 4*sin(log(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sin {\left (2 \log {\left (x \right )} \right )} + C_{2} \cos {\left (2 \log {\left (x \right )} \right )} + \frac {4 \sin {\left (\log {\left (x \right )} \right )}}{3} \]