7.13.19 problem 19

Internal problem ID [418]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 3. Power series methods. Section 3.1 (Introduction). Problems at page 206
Problem number : 19
Date solved : Saturday, March 29, 2025 at 04:53:11 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+4 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0\\ y^{\prime }\left (0\right )&=3 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 14
Order:=6; 
ode:=diff(diff(y(x),x),x)+4*y(x) = 0; 
ic:=y(0) = 0, D(y)(0) = 3; 
dsolve([ode,ic],y(x),type='series',x=0);
 
\[ y = 3 x -2 x^{3}+\frac {2}{5} x^{5}+\operatorname {O}\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 19
ode=D[y[x],{x,2}]+4*y[x]==0; 
ic={y[0]==0,Derivative[1][y][0] ==3}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to \frac {2 x^5}{5}-2 x^3+3 x \]
Sympy. Time used: 0.673 (sec). Leaf size: 32
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 3} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (\frac {2 x^{4}}{3} - 2 x^{2} + 1\right ) + C_{1} x \left (1 - \frac {2 x^{2}}{3}\right ) + O\left (x^{6}\right ) \]