64.10.39 problem 39

Internal problem ID [13374]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients. Exercises page 135
Problem number : 39
Date solved : Monday, March 31, 2025 at 07:52:40 AM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0\\ y^{\prime }\left (0\right )&=0\\ y^{\prime \prime }\left (0\right )&=2 \end{align*}

Maple. Time used: 0.046 (sec). Leaf size: 13
ode:=diff(diff(diff(y(x),x),x),x)-6*diff(diff(y(x),x),x)+11*diff(y(x),x)-6*y(x) = 0; 
ic:=y(0) = 0, D(y)(0) = 0, (D@@2)(y)(0) = 2; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = {\mathrm e}^{x} \left ({\mathrm e}^{x}-1\right )^{2} \]
Mathematica. Time used: 0.004 (sec). Leaf size: 16
ode=D[y[x],{x,3}]-6*D[y[x],{x,2}]+11*D[y[x],x]-6*y[x]==0; 
ic={y[0]==0,Derivative[1][y][0] ==0,Derivative[2][y][0] ==2}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^x \left (e^x-1\right )^2 \]
Sympy. Time used: 0.208 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-6*y(x) + 11*Derivative(y(x), x) - 6*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) 
ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 0, Subs(Derivative(y(x), (x, 2)), x, 0): 2} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (e^{2 x} - 2 e^{x} + 1\right ) e^{x} \]