Internal
problem
ID
[13368]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
4,
Section
4.2.
The
homogeneous
linear
equation
with
constant
coefficients.
Exercises
page
135
Problem
number
:
33
Date
solved
:
Monday, March 31, 2025 at 07:52:30 AM
CAS
classification
:
[[_2nd_order, _missing_x]]
With initial conditions
ode:=diff(diff(y(x),x),x)-4*diff(y(x),x)+29*y(x) = 0; ic:=y(0) = 0, D(y)(0) = 5; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,2}]-4*D[y[x],x]+29*y[x]==0; ic={y[0]==0,Derivative[1][y][0] ==5}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(29*y(x) - 4*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 5} dsolve(ode,func=y(x),ics=ics)