Internal
problem
ID
[13316]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
2,
Section
2.4.
Special
integrating
factors
and
transformations.
Exercises
page
67
Problem
number
:
13
Date
solved
:
Monday, March 31, 2025 at 07:51:19 AM
CAS
classification
:
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]
With initial conditions
ode:=2*x+3*y(x)+1+(4*x+6*y(x)+1)*diff(y(x),x) = 0; ic:=y(-2) = 2; dsolve([ode,ic],y(x), singsol=all);
ode=(2*x+3*y[x]+1)+(4*x+6*y[x]+1)*D[y[x],x]==0; ic={y[-2]==2}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x + (4*x + 6*y(x) + 1)*Derivative(y(x), x) + 3*y(x) + 1,0) ics = {y(-2): 2} dsolve(ode,func=y(x),ics=ics)