64.5.14 problem 14

Internal problem ID [13256]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number : 14
Date solved : Monday, March 31, 2025 at 07:43:47 AM
CAS classification : [_linear]

\begin{align*} y \sin \left (2 x \right )-\cos \left (x \right )+\left (1+\sin \left (x \right )^{2}\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 21
ode:=y(x)*sin(2*x)-cos(x)+(1+sin(x)^2)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {-\sin \left (x \right )-c_1}{\cos \left (x \right )^{2}-2} \]
Mathematica. Time used: 0.175 (sec). Leaf size: 29
ode=(y[x]*Sin[2*x]-Cos[x])+(1+Sin[x]^2)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {\int _1^x-2 \cos (K[1])dK[1]+c_1}{\cos (2 x)-3} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((sin(x)**2 + 1)*Derivative(y(x), x) + y(x)*sin(2*x) - cos(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out