Internal
problem
ID
[13197]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
1,
section
1.3.
Exercises
page
22
Problem
number
:
5
Date
solved
:
Monday, March 31, 2025 at 07:36:53 AM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
With initial conditions
ode:=x^3*diff(diff(diff(y(x),x),x),x)-3*x^2*diff(diff(y(x),x),x)+6*x*diff(y(x),x)-6*y(x) = 0; ic:=y(2) = 0, D(y)(2) = 2, (D@@2)(y)(2) = 6; dsolve([ode,ic],y(x), singsol=all);
ode=x^3*D[y[x],{x,3}]-3*x^2*D[y[x],{x,2}]+6*x*D[y[x],x]-6*y[x]==0; ic={y[2]==0,Derivative[1][y][2]==2Derivative[2][y][2]==6}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 3)) - 3*x**2*Derivative(y(x), (x, 2)) + 6*x*Derivative(y(x), x) - 6*y(x),0) ics = {y(2): 0, Subs(Derivative(y(x), x), x, 2): 2, Subs(Derivative(y(x), (x, 2)), x, 2): 6} dsolve(ode,func=y(x),ics=ics)