63.5.6 problem 1(f)

Internal problem ID [13009]
Book : A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.
Section : Chapter 1, First order differential equations. Section 1.4.1. Integrating factors. Exercises page 41
Problem number : 1(f)
Date solved : Monday, March 31, 2025 at 07:30:37 AM
CAS classification : [`y=_G(x,y')`]

\begin{align*} {x^{\prime }}^{2}+t x&=\sqrt {1+t} \end{align*}

Maple
ode:=diff(x(t),t)^2+t*x(t) = (t+1)^(1/2); 
dsolve(ode,x(t), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=D[x[t],t]^2+t*x[t]==Sqrt[1+t]; 
ic={}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
t = symbols("t") 
x = Function("x") 
ode = Eq(t*x(t) - sqrt(t + 1) + Derivative(x(t), t)**2,0) 
ics = {} 
dsolve(ode,func=x(t),ics=ics)
 
Timed Out