Internal
problem
ID
[12995]
Book
:
A
First
Course
in
Differential
Equations
by
J.
David
Logan.
Third
Edition.
Springer-Verlag,
NY.
2015.
Section
:
Chapter
1,
First
order
differential
equations.
Section
1.3.1
Separable
equations.
Exercises
page
26
Problem
number
:
11
Date
solved
:
Monday, March 31, 2025 at 07:29:55 AM
CAS
classification
:
[_separable]
With initial conditions
ode:=diff(x(t),t) = (4+2*t)*x(t)/ln(x(t)); ic:=x(0) = exp(1); dsolve([ode,ic],x(t), singsol=all);
ode=D[x[t],t]==(4+2*t)*x[t]/Log[x[t]]; ic={x[0]==Exp[1]}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(-(2*t + 4)*x(t)/log(x(t)) + Derivative(x(t), t),0) ics = {x(0): E} dsolve(ode,func=x(t),ics=ics)